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1 Restricted Eigenvalue Condition for Gaussian Random
Matrices

1.1 Recap: Noisy, sparse linear estimation and the restricted eigenvalue
condition

Let’s continue our analysis of noisy, sparse linear regression. Our model is y = Xθ∗ +w ∈
Rn, where

w ∈ Rn, X =

x
>
1
...
x>n

 ∈ Rn×d, θ∗ ∈ Rd, |S(θ∗)| ≤ s.

We looked at the λ formulation of the LASSO problem, where

θ̂ ∈ arg min
θ∈Rd

1

2n
‖y −Xθ‖22 + λn‖θ‖1.

We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the Cα cone

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 1.1. X ∼ RE(S, (κ, α)) if

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

We proved the following result.
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Theorem 1.1. Assume that RE(s, (κ, 3)). With a proper choice of hyperparameter, we
have

‖θ̂ − θ∗‖2 .
1

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞

. σ

√
s log d

n
.

Now we would like to answer the question: when does RE hold?

1.2 Restricted eigenvalue condition for Gaussian random matrices

Theorem 1.2. Let Xi
iid∼ N(0,Σ), where Σ ∈ Sd×d+ . There exist universal constants

c1 < 1 < c2 such that

‖X∆‖22
n

≥ c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21 ∀∆ ∈ Rd

with probability at least 1− e−n/32

1−en/32 . Here, ρ2(Σ) = maxi∈[d] Σi,i.

We think of this as a generalized RE condition. Let’s show that this implies RE(S, (κ, 3))
for every S with cardinality ≤ s. For all ∆ ∈ C3(S), we want to show that ‖∆Sc‖1 ≤
3‖∆S‖1. Given the inequality ‖∆‖21 ≤ 4s‖∆‖22, we can lower bound the right hand side in
the theorem:

c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21 ≥ c1λmin(Σ)‖∆‖22 − c2ρ

2(Σ)
log d

n
4s‖∆‖22

=

(
c1λmin(Σ)− 4c2ρ

2(Σ)
s log d

n

)
︸ ︷︷ ︸ ‖∆‖22

If n ≥ s log d8c2
c1

ρ2(Σ)
λmin(Σ) , we have the inequality 4c2ρ

2(Σ) s log d
n ≤ c1

2 λmin(Σ). We can use it
to lower bound the bracketed part.

≥ 1

2
cλmin(Σ)‖∆‖22.

Proof. Let’s prove the theorem in the case where Σ = Id, so Xi
iid∼ N(0, Id). Our goal is

the inequality
‖X∆‖22
n

+ c′2
log d

n
‖∆‖21 ≥ c′1‖∆‖22 ∀∆ ∈ Rd.

Call ‖X∆‖22 the “X norm of ∆.” We want to relate this to the 1-norm and 2 norm of ∆.
A sufficient condition is to have

‖X∆‖2√
n

+ c2

√
log d

n
‖∆‖1 ≥ c1‖∆‖2 ∀∆ ∈ Rd
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because if a, b > 0, then a+ b ≤ c =⇒ a2 + b2 ≤ c2. This inequality is invariant to scaling
∆, so it is sufficient to show that

‖X∆‖2√
n

+ c2

√
log d

n
‖∆‖1 ≥ c1 ∀‖∆‖2 = 1.

So we want to check that

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
‖∆‖1 ∀‖∆‖2 = 1.

It is sufficient to show this for all ∆ with bounded 1-norm:

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r ∀‖∆‖2 = 1, ‖∆‖1 ≤ r

for all r > 0. This means we can show that

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r ∀r > 0.

The intuition is that we want to apply the Gaussian comparison inequality, for which
we need a ‖X∆‖2 on the left hand side and no ∆ dependence on the right hand side. We
have 3 steps:

Step 1: Expectation bound for fixed r > 0 (Gaussian comparison inequality)

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ c1 − c2

√
log d

n
r

Step 2: Concentration for fixed r > 0 (Gaussian concentration)

Gr =

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}

occurs with high probability.

Step 3: Union bound over r > 0 (Peeling argument): Let G =
⋂
r>0Gr, so that

Gc =
⋃
r>0G

c
r. Then we can calculate

P(Gc) ≤
∑
r>0

P(Gcr).

We need to discretize the sum to get a bound that works.
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We provide the rest of the proof in lemmas.

Lemma 1.1 (Gaussian comparison). There exist constants c1, c2 such that

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ c1 − c2

√
log d

n
r

Proof. By the variational representation of the norm,

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
= E

[
inf

∆∈Sd−1(1)∩B1(r)
sup

u∈Sn−1

〈u,X∆〉
n

]
.

By Gordon’s inequality,

E
[

inf
∆∈S

sup
u∈T
〈u,X∆〉

]
≥ E

[
inf

∆∈S
sup
u∈T
〈h,∆〉+ 〈g, u〉

]
,

for any S, T , where Xi,j , gi, hi
iid∼ N(0, 1). So we get

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ E

[
inf

∆∈Sd−1(1)∩B1(r)
sup
‖u‖2=1

〈h,∆〉√
n

+
〈g, u〉√
n

]

= E

[
inf
∆

〈h,∆〉√
n

+ sup
‖u‖2=1

〈g, u〉√
n

]

= E
[

inf
‖∆‖2=1,‖∆‖1≤r

〈h,∆〉√
n

]
+ E

[
sup
‖u‖2=1

〈g, u〉√
n

]
Since E[‖g2‖2/n] = 1, the expectation of the square root will be close to 1. We have
the lower bound E[‖g‖2/

√
n] ≥ 1/4. The first term on the other hand, can be expresed

as −E
[
sup‖∆‖2=1,‖∆‖1≤r

〈−h,∆〉√
n

]
≥ −E

[
sup‖∆‖1≤r

〈−h,∆〉√
n

]
= −E

[
‖−h‖∞√

n

]
r ≥ −2

√
log d
n r.

So we get

≥ 1

4
− 2

√
log d

n
r.

Lemma 1.2 (Concentration). Let Xi,j
iid∼ N(0, 1). The the event

Gr =

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}

occurs with high probability.
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Proof. Define the function

f(X) = inf
‖∆‖2=1,∆∈S

‖X∆‖2√
2

.

We want to show that f is Lipschitz for the Frobenius norm, so we can use the Gaussian
concentration lemma. Define ∆∗ = arg min ‖X2∆‖2/

√
n. Then

f(X1)− f(X2) ≤ ‖X1∆∗‖1√
n

− ‖X2∆∗‖2√
n

≤ ‖(X1 −X2)∆∗‖1√
n

≤ ‖X1 −X2‖op‖∆∗‖1√
n

≤ ‖X1 −X2‖F√
n

This means that f is 1√
n

-Lipschitz in ‖X‖F , so f(X) is sG(1/
√
n). Then

P(f(X) ≤ E[f(X)]− t) ≤ e−nt2/2,

so

Gr :=

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}
occurs with high probability.

Lemma 1.3 (Peeling argument). Let the bad event be

Gc =

{
∃∆, ‖∆‖2 = 1 s.t.

‖X∆‖2√
n
≤ c1 − c2

√
log d

n
‖∆‖1

}
.

then Gc ⊆
⋃mmax
m=mmin

Gc2m+1, so P(Gc) ≤
∑mmax

m=mmin
P(Gc2m+1).

Proof. Note that ‖∆‖2 ≤ ‖∆‖1 ≤
√
d‖∆‖2, so we get 1 ≤ ‖∆‖1 ≤

√
d. We discretize the

interval in the log scale:

[1,
√
d] =

mmax⋃
m=0

[2m, 2m+1), mmax = log2(
√
d) ≈ log d.

The we can write

Gc ⊆
mmax⋃

m=mmin

{
∃∆, ‖∆‖2 = 1, 2m ≤ ‖∆‖1 ≤ 2m+1 s.t.

‖X∆‖2√
n
≤ c1 − c2

√
log d

n
2m

}
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⊆

{
inf

‖∆‖2=1,‖∆1≤2m+1

‖X∆‖2√
n
≤ c1 −

c2

2

√
log d

n

}
︸ ︷︷ ︸

Gc
2m+1

.

So we have shown that Gc ⊆
⋃mmax
m=mmin

Gc2m+1 .

1.3 LASSO oracle inequality

We have shown that we can efficiently bound the approximation error of θ∗ if θ∗ is sparse.
But what if θ∗ is not exactly sparse but is instead approximately sparse? That is, what if
θ∗Sc 6= 0 but ‖θ∗Sc‖1 is small?

Definition 1.2. We say that an estimator θ̂ satisfies an oracle inequality with respect
to the risk R, set Θ, and model {Pθ : θ ∈ Θ∗} (Θ ⊆ Θ∗), if there exist constants c and
εn(Pθ∗ ,Θ) such that for any θ∗ ∈ Θ∗, then

R(θ̂; θ∗) ≤ c inf
θ∈Θ

R(θ; θ∗)︸ ︷︷ ︸
approx. error/oracle risk

+ εn(Pθ∗ ,Θ)︸ ︷︷ ︸
statistical error

.

We hope that c is not too large and that εn is small. If θ∗ ∈ Θ, then

inf
θ∈Θ

R(θ; θ∗) = 0.

Let Θ = {∆Rd : ‖∆‖0 ≤ s} be the set of s-sparse vectors and let R(θ; θ∗) = ‖θ − θ∗‖2.
Then if θ∗ is s-sparse, infθ∈ΘR(θ; θ∗) = 0. If θ∗ is not s-sparse, then

inf
θ∈Θ

R(θ, θ∗) > 0.

We use our generalized RE condition:

‖X∆‖22
n

≥ c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21, ∀∆ ∈ Rd.

Theorem 1.3 (LASSO oracle inequality). Assume the generalized RE condition holds for

X ∈ Rn×d. Let θ̂ be solution to the λ formulation of LASSO with λn ≥ 2‖X>wn ‖∞. Then
for any S with |S| ≤ c1

64c2
κ

ρ2(Σ)
n

log d (where κ = λmin(Σ),

‖θ̂ − θ∗‖22 ≤
144

c2
1

λ2
n

κ2 |S|︸ ︷︷ ︸
statistical error .σ2 s log d

n

+
16

c1

λn
κ
‖θ∗Sc‖1 +

32c2

c1

ρ2(Σ)

κ

log d

n
‖θ∗Sc‖21︸ ︷︷ ︸

approx. error/oracle risk .εn+ε2n

,

where εn =
√

log d
n ‖θ

∗
Sc‖1.

Proof. This this a deterministic inequality, so the proof is to derive a basic inequality and
then use some algebra. The proof is in the textbook.
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