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1 Restricted Eigenvalue Condition for Gaussian Random
Matrices

1.1 Recap: Noisy, sparse linear estimation and the restricted eigenvalue
condition

Let’s continue our analysis of noisy, sparse linear regression. Our model is y = X0* +w €
R"™, where
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We looked at the A formulation of the LASSO problem, where
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We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the C, cone

Ca(S) ={A € Rt [Asel1 < al|As|l1}.

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 1.1. X ~ RE(S, (k,a)) if
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We proved the following result.



Theorem 1.1. Assume that RE(s, (k,3)). With a proper choice of hyperparameter, we
have
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Now we would like to answer the question: when does RE hold?

1.2 Restricted eigenvalue condition for Gaussian random matrices

Theorem 1.2. Let X; -9

c1 <1 < cy such that

N(0,%), where ¥ € Sf‘,erd. There exist universal constants
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We think of this as a generalized RE condition. Let’s show that this implies RE(S, (k, 3))
for every S with cardinality < s. For all A € C3(S), we want to show that ||Age|; <
3||As|l1. Given the inequality ||Al|? < 4s||Al]3, we can lower bound the right hand side in
the theorem:
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If n > slog dscf £ (?)) we have the inequality 402p2(2)% < FAmin(X). We can use it
to lower bound the bracketed part.
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Proof. Let’s prove the theorem in the case where ¥ = I, so X; id N(0,I4). Our goal is
the inequality
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Call || X A2 the “X norm of A.” We want to relate this to the 1-norm and 2 norm of A.
A sufficient condition is to have
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because if a,b > 0, then a+b < ¢ = a?+b?> < 2. This inequality is invariant to scaling
A, so it is sufficient to show that
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So we want to check that
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It is sufficient to show this for all A with bounded 1-norm:
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for all » > 0. This means we can show that
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The intuition is that we want to apply the Gaussian comparison inequality, for which
we need a || XAl|2 on the left hand side and no A dependence on the right hand side. We
have 3 steps:

Step 1: Expectation bound for fixed » > 0 (Gaussian comparison inequality)
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Step 2: Concentration for fixed » > 0 (Gaussian concentration)

XA log d
G, = wf XAl [load
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occurs with high probability.

Step 3: Union bound over r > 0 (Peeling argument): Let G = (.., G, so that
G° = U,>0 G5 Then we can calculate

P(G°) <> P(GS).

r>0

We need to discretize the sum to get a bound that works.



We provide the rest of the proof in lemmas. O

Lemma 1.1 (Gaussian comparison). There exist constants c1,co such that
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Proof. By the variational representation of the norm,
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By Gordon’s inequality,
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Since E[||g2]|?/n] = 1, the expectation of the square root will be close to 1. We have

the lower bound E[||g|l2/v/n] > 1/4. The first term on the other hand, can be expresed
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Lemma 1.2 (Concentration). Let X ; £y N(0,1). The the event
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occurs with high probability.




Proof. Define the function
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We want to show that f is Lipschitz for the Frobenius norm, so we can use the Gaussian
concentration lemma. Define A* = argmin || X2All2/+/n. Then
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This means that f is ﬁ—Lipschitz in | X||p, so f(X) is sG(1/y/n). Then

f(X1) = f(X2)

P(f(X) < B[f(X)] —t) < e™"/2,
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occurs with high probability. O

Lemma 1.3 (Peeling argument). Let the bad event be

XA logd
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then G¢ C = GSir, 50 P(GO) < Yoo P(GG 1)
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Proof. Note that ||Allz < [|All1 < Vd||Al2, so we get 1 < ||All; < Vd. We discretize the
interval in the log scale:
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So we have shown that G¢ C |/ St O
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1.3 LASSO oracle inequality

We have shown that we can efficiently bound the approximation error of 6* if 6* is sparse.
But what if 8* is not exactly sparse but is instead approximately sparse? That is, what if
0% # 0 but ||0%.||1 is small?

Definition 1.2. We say that an estimator f satisfies an oracle inequality with respect
to the risk R, set ©, and model {Py : # € ©*} (O C ©F), if there exist constants ¢ and
en(Pgp«, ©) such that for any 6* € ©*, then

R(#;6%) < ¢ 52@]%(9,9) + en(Pp+,0)

. statistical error
approx. error/oracle risk

We hope that c is not too large and that e, is small. If 6* € ©, then
inf R(0;6%) =0.
0O
Let © = {ARY : ||Allp < s} be the set of s-sparse vectors and let R(0;60%) = ||0 — 6*||2.
Then if 0* is s-sparse, infgcg R(0;6*) = 0. If 6* is not s-sparse, then
inf R(6,0%) > 0.
0cO
We use our generalized RE condition:
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Theorem 1.3 (LASSO oracle inequality). Assume the generalized RE condition holds for

X € R™4. Let § be solution to the A formulation of LASSO with A, > 2||XTT1”HOc> Then
for any S with |S] < 5% e (where B = Amin(2),
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Proof. This this a deterministic inequality, so the proof is to derive a basic inequality and
then use some algebra. The proof is in the textbook. O
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