Statistics 210B Lecture 20 Notes

Daniel Raban
April 5, 2022

1 Restricted Eigenvalue Condition for Gaussian Random Matrices

1.1 Recap: Noisy, sparse linear estimation and the restricted eigenvalue condition

Let's continue our analysis of noisy, sparse linear regression. Our model is $y=X \theta^{*}+w \in$ \mathbb{R}^{n}, where

$$
w \in \mathbb{R}^{n}, \quad X=\left[\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{n}^{\top}
\end{array}\right] \in \mathbb{R}^{n \times d}, \quad \theta^{*} \in \mathbb{R}^{d}, \quad\left|S\left(\theta^{*}\right)\right| \leq s
$$

We looked at the λ formulation of the LASSO problem, where

$$
\widehat{\theta} \in \underset{\theta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{2 n}\|y-X \theta\|_{2}^{2}+\lambda_{n}\|\theta\|_{1} .
$$

We also looked at the 1-norm constrained and error-constrained formulations of the problem. We defined the \mathbb{C}_{α} cone

$$
\mathbb{C}_{\alpha}(S)=\left\{\Delta \in \mathbb{R}^{d}:\left\|\Delta_{S^{c}}\right\|_{1} \leq \alpha\left\|\Delta_{S}\right\|_{1}\right\}
$$

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on estimation.

Definition 1.1. $X \sim \operatorname{RE}(S,(\kappa, \alpha))$ if

$$
\frac{1}{n}\|X \Delta\|_{2}^{2} \geq \kappa\|\Delta\|_{2}^{2} \quad \forall \Delta \in \mathbb{C}_{\alpha}(S) .
$$

We proved the following result.

Theorem 1.1. Assume that $\operatorname{RE}(s,(\kappa, 3))$. With a proper choice of hyperparameter, we have

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \lesssim \frac{1}{\kappa} \sqrt{s}\left\|\frac{X^{\top} w}{n}\right\|_{\infty} \lesssim \sigma \sqrt{\frac{s \log d}{n}} .
$$

Now we would like to answer the question: when does RE hold?

1.2 Restricted eigenvalue condition for Gaussian random matrices

Theorem 1.2. Let $X_{i} \stackrel{\text { iid }}{\sim} N(0, \Sigma)$, where $\Sigma \in S_{+}^{d \times d}$. There exist universal constants $c_{1}<1<c_{2}$ such that

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq c_{1}\|\sqrt{\Sigma} \Delta\|_{2}^{2}-c_{2} \rho^{2}(\Sigma) \frac{\log d}{n}\|\Delta\|_{1}^{2} \quad \forall \Delta \in \mathbb{R}^{d}
$$

with probability at least $1-\frac{e^{-n / 32}}{1-e^{n / 32}}$. Here, $\rho^{2}(\Sigma)=\max _{i \in[d]} \Sigma_{i, i}$.
We think of this as a generalized RE condition. Let's show that this implies $\mathrm{RE}(S,(\kappa, 3))$ for every S with cardinality $\leq s$. For all $\Delta \in \mathbb{C}_{3}(S)$, we want to show that $\left\|\Delta_{S^{c}}\right\|_{1} \leq$ $3\left\|\Delta_{S}\right\|_{1}$. Given the inequality $\|\Delta\|_{1}^{2} \leq 4 s\|\Delta\|_{2}^{2}$, we can lower bound the right hand side in the theorem:

$$
\begin{aligned}
c_{1}\|\sqrt{\Sigma} \Delta\|_{2}^{2}-c_{2} \rho^{2}(\Sigma) \frac{\log d}{n}\|\Delta\|_{1}^{2} & \geq c_{1} \lambda_{\min }(\Sigma)\|\Delta\|_{2}^{2}-c_{2} \rho^{2}(\Sigma) \frac{\log d}{n} 4 s\|\Delta\|_{2}^{2} \\
& =\underbrace{\left(c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \rho^{2}(\Sigma) \frac{s \log d}{n}\right)}\|\Delta\|_{2}^{2}
\end{aligned}
$$

If $n \geq s \log d \frac{8 c_{2}}{c_{1}} \frac{\rho^{2}(\Sigma)}{\lambda_{\min }(\Sigma)}$, we have the inequality $4 c_{2} \rho^{2}(\Sigma) \frac{s \log d}{n} \leq \frac{c_{1}}{2} \lambda_{\min }(\Sigma)$. We can use it to lower bound the bracketed part.

$$
\geq \frac{1}{2} c \lambda_{\min }(\Sigma)\|\Delta\|_{2}^{2}
$$

Proof. Let's prove the theorem in the case where $\Sigma=I_{d}$, so $X_{i} \stackrel{\text { iid }}{\sim} N\left(0, I_{d}\right)$. Our goal is the inequality

$$
\frac{\|X \Delta\|_{2}^{2}}{n}+c_{2}^{\prime} \frac{\log d}{n}\|\Delta\|_{1}^{2} \geq c_{1}^{\prime}\|\Delta\|_{2}^{2} \quad \forall \Delta \in \mathbb{R}^{d}
$$

Call $\|X \Delta\|_{2}^{2}$ the " X norm of Δ." We want to relate this to the 1-norm and 2 norm of Δ. A sufficient condition is to have

$$
\frac{\|X \Delta\|_{2}}{\sqrt{n}}+c_{2} \sqrt{\frac{\log d}{n}}\|\Delta\|_{1} \geq c_{1}\|\Delta\|_{2} \quad \forall \Delta \in \mathbb{R}^{d}
$$

because if $a, b>0$, then $a+b \leq c \Longrightarrow a^{2}+b^{2} \leq c^{2}$. This inequality is invariant to scaling Δ, so it is sufficient to show that

$$
\frac{\|X \Delta\|_{2}}{\sqrt{n}}+c_{2} \sqrt{\frac{\log d}{n}}\|\Delta\|_{1} \geq c_{1} \quad \forall\|\Delta\|_{2}=1 .
$$

So we want to check that

$$
\frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}}\|\Delta\|_{1} \quad \forall\|\Delta\|_{2}=1
$$

It is sufficient to show this for all Δ with bounded 1-norm:

$$
\frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r \quad \forall\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r
$$

for all $r>0$. This means we can show that

$$
\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r \quad \forall r>0 .
$$

The intuition is that we want to apply the Gaussian comparison inequality, for which we need a $\|X \Delta\|_{2}$ on the left hand side and no Δ dependence on the right hand side. We have 3 steps:

Step 1: Expectation bound for fixed $r>0$ (Gaussian comparison inequality)

$$
\mathbb{E}\left[\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}}\right] \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n} r}
$$

Step 2: Concentration for fixed $r>0$ (Gaussian concentration)

$$
G_{r}=\left\{\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r\right\}
$$

occurs with high probability.
Step 3: Union bound over $r>0$ (Peeling argument): Let $G=\bigcap_{r>0} G_{r}$, so that $G^{c}=\bigcup_{r>0} G_{r}^{c}$. Then we can calculate

$$
\mathbb{P}\left(G^{c}\right) \leq \sum_{r>0} \mathbb{P}\left(G_{r}^{c}\right)
$$

We need to discretize the sum to get a bound that works.

We provide the rest of the proof in lemmas.
Lemma 1.1 (Gaussian comparison). There exist constants c_{1}, c_{2} such that

$$
\mathbb{E}\left[\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}}\right] \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r
$$

Proof. By the variational representation of the norm,

$$
\mathbb{E}\left[\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}}\right]=\mathbb{E}\left[\inf _{\Delta \in S^{d-1}(1) \cap B_{1}(r)} \sup _{u \in S^{n-1}} \frac{\langle u, X \Delta\rangle}{n}\right] .
$$

By Gordon's inequality,

$$
\mathbb{E}\left[\inf _{\Delta \in S} \sup _{u \in T}\langle u, X \Delta\rangle\right] \geq \mathbb{E}\left[\inf _{\Delta \in S} \sup _{u \in T}\langle h, \Delta\rangle+\langle g, u\rangle\right],
$$

for any S, T, where $X_{i, j}, g_{i}, h_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1)$. So we get

$$
\begin{aligned}
\mathbb{E}\left[\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}}\right] & \geq \mathbb{E}\left[\inf _{\Delta \in S^{d-1}(1) \cap B_{1}(r)} \sup _{\|u\|_{2}=1} \frac{\langle h, \Delta\rangle}{\sqrt{n}}+\frac{\langle g, u\rangle}{\sqrt{n}}\right] \\
& =\mathbb{E}\left[\inf _{\Delta} \frac{\langle h, \Delta\rangle}{\sqrt{n}}+\sup _{\|u\|_{2}=1} \frac{\langle g, u\rangle}{\sqrt{n}}\right] \\
& =\mathbb{E}\left[\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\langle h, \Delta\rangle}{\sqrt{n}}\right]+\mathbb{E}\left[\sup _{\|u\|_{2}=1} \frac{\langle g, u\rangle}{\sqrt{n}}\right]
\end{aligned}
$$

Since $\mathbb{E}\left[\left\|g_{2}\right\|^{2} / n\right]=1$, the expectation of the square root will be close to 1 . We have the lower bound $\mathbb{E}\left[\|g\|_{2} / \sqrt{n}\right] \geq 1 / 4$. The first term on the other hand, can be expresed as $-\mathbb{E}\left[\sup _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\langle-h, \Delta\rangle}{\sqrt{n}}\right] \geq-\mathbb{E}\left[\sup _{\|\Delta\|_{1} \leq r} \frac{\langle-h, \Delta\rangle}{\sqrt{n}}\right]=-\mathbb{E}\left[\frac{\|-h\|_{\infty}}{\sqrt{n}}\right] r \geq-2 \sqrt{\frac{\log d}{n}} r$. So we get

$$
\geq \frac{1}{4}-2 \sqrt{\frac{\log d}{n}} r .
$$

Lemma 1.2 (Concentration). Let $X_{i, j} \stackrel{\mathrm{iid}}{\sim} N(0,1)$. The the event

$$
G_{r}=\left\{\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r\right\}
$$

occurs with high probability.

Proof. Define the function

$$
f(X)=\inf _{\|\Delta\|_{2}=1, \Delta \in S} \frac{\|X \Delta\|_{2}}{\sqrt{2}} .
$$

We want to show that f is Lipschitz for the Frobenius norm, so we can use the Gaussian concentration lemma. Define $\Delta^{*}=\arg \min \left\|X_{2} \Delta\right\|_{2} / \sqrt{n}$. Then

$$
\begin{aligned}
f\left(X_{1}\right)-f\left(X_{2}\right) & \leq \frac{\left\|X_{1} \Delta^{*}\right\|_{1}}{\sqrt{n}}-\frac{\left\|X_{2} \Delta^{*}\right\|_{2}}{\sqrt{n}} \\
& \leq \frac{\left\|\left(X_{1}-X_{2}\right) \Delta^{*}\right\|_{1}}{\sqrt{n}} \\
& \leq \frac{\left\|X_{1}-X_{2}\right\|_{\mathrm{op}}\left\|\Delta^{*}\right\|_{1}}{\sqrt{n}} \\
& \leq \frac{\left\|X_{1}-X_{2}\right\|_{F}}{\sqrt{n}}
\end{aligned}
$$

This means that f is $\frac{1}{\sqrt{n}}$-Lipschitz in $\|X\|_{F}$, so $f(X)$ is $\mathrm{sG}(1 / \sqrt{n})$. Then

$$
\mathbb{P}(f(X) \leq E[f(X)]-t) \leq e^{-n t^{2} / 2}
$$

so

$$
G_{r}:=\left\{\inf _{\|\Delta\|_{2}=1,\|\Delta\|_{1} \leq r} \frac{\|X \Delta\|_{2}}{\sqrt{n}} \geq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} r\right\}
$$

occurs with high probability.
Lemma 1.3 (Peeling argument). Let the bad event be

$$
G^{c}=\left\{\exists \Delta,\|\Delta\|_{2}=1 \text { s.t. } \frac{\|X \Delta\|_{2}}{\sqrt{n}} \leq c_{1}-c_{2} \sqrt{\frac{\log d}{n}}\|\Delta\|_{1}\right\} .
$$

then $G^{c} \subseteq \bigcup_{m=m_{\min }}^{m_{\max }} G_{2^{m+1}}^{c}$, so $\mathbb{P}\left(G^{c}\right) \leq \sum_{m=m_{\min }}^{m_{\max }} \mathbb{P}\left(G_{2^{m+1}}^{c}\right)$.
Proof. Note that $\|\Delta\|_{2} \leq\|\Delta\|_{1} \leq \sqrt{d}\|\Delta\|_{2}$, so we get $1 \leq\|\Delta\|_{1} \leq \sqrt{d}$. We discretize the interval in the log scale:

$$
[1, \sqrt{d}]=\bigcup_{m=0}^{m_{\max }}\left[2^{m}, 2^{m+1}\right), \quad m_{\max }=\log _{2}(\sqrt{d}) \approx \log d .
$$

The we can write

$$
G^{c} \subseteq \bigcup_{m=m_{\min }}^{m_{\max }}\left\{\exists \Delta,\|\Delta\|_{2}=1,2^{m} \leq\|\Delta\|_{1} \leq 2^{m+1} \text { s.t. } \frac{\|X \Delta\|_{2}}{\sqrt{n}} \leq c_{1}-c_{2} \sqrt{\frac{\log d}{n}} 2^{m}\right\}
$$

$$
\subseteq \underbrace{\left\{\inf _{\|\Delta\|_{2}=1, \| \Delta_{1} \leq 2^{m+1}} \frac{\|X \Delta\|_{2}}{\sqrt{n}} \leq c_{1}-\frac{c_{2}}{2} \sqrt{\frac{\log d}{n}}\right\}}_{\inf _{2^{m+1}}}
$$

So we have shown that $G^{c} \subseteq \bigcup_{m=m_{\min }}^{m_{\text {max }}} G_{2^{m+1}}^{c}$.

1.3 LASSO oracle inequality

We have shown that we can efficiently bound the approximation error of θ^{*} if θ^{*} is sparse. But what if θ^{*} is not exactly sparse but is instead approximately sparse? That is, what if $\theta_{S^{c}}^{*} \neq 0$ but $\left\|\theta_{S^{c}}^{*}\right\|_{1}$ is small?
Definition 1.2. We say that an estimator $\widehat{\theta}$ satisfies an oracle inequality with respect to the risk R, set Θ, and model $\left\{\mathbb{P}_{\theta}: \theta \in \Theta^{*}\right\}\left(\Theta \subseteq \Theta^{*}\right)$, if there exist constants c and $\varepsilon_{n}\left(\mathbb{P}_{\theta^{*}}, \Theta\right)$ such that for any $\theta^{*} \in \Theta^{*}$, then

$$
R\left(\widehat{\theta} ; \theta^{*}\right) \leq c \underbrace{\inf _{\theta \in \Theta} R\left(\theta ; \theta^{*}\right)}_{\text {approx. error/oracle risk }}+\underbrace{\varepsilon_{n}\left(\mathbb{P}_{\theta^{*}}, \Theta\right)}_{\text {statistical error }}
$$

We hope that c is not too large and that ε_{n} is small. If $\theta^{*} \in \Theta$, then

$$
\inf _{\theta \in \Theta} R\left(\theta ; \theta^{*}\right)=0 .
$$

Let $\Theta=\left\{\Delta \mathbb{R}^{d}:\|\Delta\|_{0} \leq s\right\}$ be the set of s-sparse vectors and let $R\left(\theta ; \theta^{*}\right)=\left\|\theta-\theta^{*}\right\|_{2}$. Then if θ^{*} is s-sparse, $\inf _{\theta \in \Theta} R\left(\theta ; \theta^{*}\right)=0$. If θ^{*} is not s-sparse, then

$$
\inf _{\theta \in \Theta} R\left(\theta, \theta^{*}\right)>0 .
$$

We use our generalized RE condition:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq c_{1}\|\sqrt{\Sigma} \Delta\|_{2}^{2}-c_{2} \rho^{2}(\Sigma) \frac{\log d}{n}\|\Delta\|_{1}^{2}, \quad \forall \Delta \in \mathbb{R}^{d}
$$

Theorem 1.3 (LASSO oracle inequality). Assume the generalized $R E$ condition holds for $X \in \mathbb{R}^{n \times d}$. Let $\hat{\theta}$ be solution to the λ formulation of LASSO with $\lambda_{n} \geq 2\left\|\frac{X^{\top} w}{n}\right\|_{\infty}$. Then for any S with $|S| \leq \frac{c_{1}}{64 c_{2}} \frac{\bar{\kappa}}{\rho^{2}(\Sigma)} \frac{n}{\log d}$ (where $\bar{\kappa}=\lambda_{\min }(\Sigma)$,

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \underbrace{\frac{144}{c_{1}^{2}} \frac{\lambda_{n}^{2}}{\bar{\kappa}^{2}}|S|}_{\text {statistical error } \lesssim \sigma^{2} \frac{s \log d}{n}}+\underbrace{\frac{16}{c_{1}} \frac{\lambda_{n}}{\bar{\kappa}}\left\|\theta_{S^{c}}^{*}\right\|_{1}+\frac{32 c_{2}}{c_{1}} \frac{\rho^{2}(\Sigma)}{\bar{\kappa}} \frac{\log d}{n}\left\|\theta_{S^{c}}^{*}\right\|_{1}^{2}}_{\text {approx. error/oracle risk } \lesssim \varepsilon_{n}+\varepsilon_{n}^{2}},
$$

where $\varepsilon_{n}=\sqrt{\frac{\log d}{n}}\left\|\theta_{S^{c}}^{*}\right\|_{1}$.
Proof. This this a deterministic inequality, so the proof is to derive a basic inequality and then use some algebra. The proof is in the textbook.

